Zaawansowane Metody Badań Materiałów

Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Fazowa analiza ilościowa Obliczenia strukturalne – prawo Vegarda Pomiary cienkich warstw

Budowa mikroskopu AFM Tryby pracy mikroskopu AFM Zastosowanie

Dyfraktometria rentgenowska materiałów polikrystalicznych

próbka:

- materiał proszkowy polikrystaliczny o optymalnym uziarnieniu 0,1 10 μm (0,0001 0,001 mm),
- materiał lity (uwaga na efekt tekstury)

promieniowanie:

> monochromatyczne K α lub K α^1 ,

układ pomiarowy:

- goniometr dwukołowy
- geometria Bragg-Brentano (najczęściej)

Dyfraktogram proszkowy polikrystaliczny

Rentgenowska analiza fazowa ilościowa

 $\mathbf{J}_{hkl} = \mathbf{C} \cdot |\mathbf{F}_{hkl}|^2 \cdot \mathbf{LP} \cdot \mathbf{p} \cdot \mathbf{A} \cdot \mathbf{V}_n$

w układach wielofazowych

/F_{hkl} / ² – czynnik struktury, zawierający czynnik temperaturowy

N - liczba komórek elementarnych w 1 cm³

LP – czynnik Lorentza i polaryzacji (czynnik kątowy);

p – czynnik krotności płaszczyzn;

A – absorbcja;

$$\mathbf{C} = \mathbf{J}_{o} \cdot \lambda^{3} \mathbf{N}^{2} \cdot \left(\frac{\mu_{o} \mathbf{e}^{2}}{4\pi \mathbf{mr}} \right)^{2}$$

J_o – natężenie promieniowania padającego;

 λ - długość fali;

- μ_o przenikalność magnetyczna próżni;
- e ładunek elektronu;

m – masa elektronu;

r - odległość elektronu od punktu pomiarowego,

- N liczba komórek elementarnych w 1 cm³
- V_n udział objętościowy n-tej fazy.

Współczynniki absorpcji

- J_o natężenie wiązki promieniowania rentgenowskiego przechodzącego przez absorbent o grubości dx
- dJ straty natężenia przy przechodzeniu wiązki przez absorbent, proporcjonalne do I_0 , dx oraz μ
- μ liniowy współczynnik absorpcji

 $dJ = \mu J_o dx$

Równanie absorpcji Beera:

- μx J = J_o e

 μ = 1/(2A) w próbkach płaskich (w dyfraktometrach) μ * - masowy współczynnik absorpcji, μ * = μ/ρ

Analiza fazowa ilościowa - metody

- metoda bezpośredniego porównania natężeń refleksów:
- gdy w mieszaninie występują dwie fazy o takim samym μ^* (mieszanina absorbuje wtedy promienie X tak samo jak pojedyncza czysta faza);

metoda wzorca wewnętrznego

- gdy μ^* czystej, pojedynczej fazy i mieszaniny różnią się od siebie

metoda wzorca zewnętrznego

- gdy μ^* czystej, pojedynczej fazy i mieszaniny różnią się od siebie

metoda Rietvelda

- matematyczna analiza profilu refleksu, niezależna od różnicy μ^* występujących w mieszanieniefaz

Metoda wzorca wewnętrznego

$$J_{hkl}{}^{a} = \underbrace{C \cdot |F_{hkl}|^{2} \cdot LP \cdot p}_{K_{a}} \cdot A \cdot V_{a}$$

$$K_{a}^{A}$$

$$A=1/(2 \mu); \quad \rho_{a} = m_{a}/V_{a} \longrightarrow V_{A} = m_{a}/\rho_{a}$$

$$m_{a} \longrightarrow X_{a} \quad X_{a} - \% \text{ zawartość fazy A}$$

$$m_{w} \longrightarrow X_{w} \quad X_{w} - \% \text{ zawartość wzorca}$$

$$J_{hkl}{}^{a} = \frac{K_{a}^{A} \cdot x_{a}}{\mu^{*} \cdot \rho_{a}} \quad dla \text{ fazy A}$$

$$J_{hkw}{}^{w} = \frac{K_{w}^{A} \cdot x_{w}}{\mu^{*} \cdot \rho_{w}} \quad dla \text{ wzorca}$$

Wzorzec: MgO, Si, α -Al₂O₃ itp...

$$K_a$$
, ρ_a - stałe dla fazy A,

 $\textbf{K}_{\textbf{w}}$, $\rho_{\textbf{w}}\,$ - stałe dla wzorca,

 $μ^*$ - masowy współczynnik absorpcji mieszaniny, $μ^* = μ/ρ$ ρ - gęstość mieszaniny

$$J_{hkl}^{a} = \frac{K_{a} \cdot X_{a}}{\mu^{*}}$$
$$J_{hkl}^{w} = \frac{K_{w} \cdot X_{w}}{\mu^{*}}$$

Wyznaczanie zawartości fazy A - X_A

Wybieramy refleks analityczny:

- dla oznaczanej fazy J_{hkl}^a
 (z reguły najsilniejszy refleks)
- dla wzorca J_{hkl}^w

$$X_{a} = \frac{J_{hkl}^{a} X_{w}}{J_{hkl}^{w} K}$$

zawartość fazy A
[%] lub ułamek wagowy

Krzywa kalibracyjna (np. dla CaCO₃)

DANE		Suma	Wagi		Intensywnosci			
CaCO3	AI2O3		CaCO3	AI2O3	CaCO3 int	Al2O3 int	X	у
0,095	0,3923	0,4873	0,194952	0,805048	83,04	71,7	0,242162	1,158159
0,1885	0,3009	0,4894	0,385166	0,614834	128,95	44,36	0,626454	2,906898
0,248	0,2447	0,4927	0,503349	0,496651	150,1	32,98	1,013486	4,551243
0,2862	0,2031	0,4893	0,584917	0,415083	163,6	26,76	1,409158	6,113602
0,4002	0,1113	0,5115	0,782405	0,217595	204,38	11,07	3,595687	18,46251

 $J_a/J_w = f(x_a/x_w)$

funkcja liniowa y = ax+b a= K (stała K) b ≅ 0

dla CaCO₃: y = 5.2115 x – 0.534 K = 5.2115

Natężenie refleksu odpowiada polu powierzchni refleksu (pole pod krzywą) – intensywność integralna

Dokładność i źródła błędów w analizie ilościowej

Różnice w strukturze fazy oznaczanej i wzorcowej

- •różne [F_{hkl}]²
- różna objętość komórek elementarnych
- różnice w gęstościach
- tworzenie roztworów stałych

Przygotowanie próbek

- brak lub słaba homogenizacja próbek
- steksturowanie próbek
- niedostateczne rozdrobnienie
- niedokładne naważki próbki i wzorca

Warunki pomiarowe

 brak stabilnej pracy źródła promieni X (lampy)

brak stabilnej pracy detektora

 brak wyjustowania goniometru

 brak wyjustowania monochromatora

Obliczenia strukturalne – wyznaczanie parametrów komórki elementarnej

Równania kwadratowe:

1/ $d_{hkl}^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$ w układach prostokątnych: regularnym, tetragonalnym i ortorombowym

 $1/d_{hkl}^2 = 4/3 [(h^2 + k^2 + hk)/a^2 + l^2/c^2]$

w układzie heksagonalnym

graniastosłup o podstawie sześciokąta foremnego

równoległościan o kącie $\gamma=120^{o}$

komórki elementarne prostokątne

 $n\lambda = 2 d_{hkl} sin\theta$

komórki elementarne w układzie heksagonalnym

Prawo Vegarda

Parametry komórek elementarnych roztworów stałych soli jonowych zmieniają się liniowo ze wzrostem zawartości składnika podstawiającego się wg wzoru:

 $a_r = a_1 + (a_2 - a_1) \cdot C_2 / 100$

Wykres: $a_r = f(C_2 / 100)$

a_r – stała sieciowa roztworu stałego
 a₁ - stała sieciowa rozpuszczalnika
 a₂ - stała sieciowa substancji rozpuszczonej
 C₂ – zawartość substancji rozpuszczonej [% mol.]

a_r roztwór stały

Liniowy charakter wykresu odpowiada zakresowi występowania roztworu stałego

Roztwory stałe

roztwór substytucyjny (podstawieniowy)

- podobny promień jonowy +/-15% różnicy (war. norm.)
- ten sam typ wzoru chemicznego
- ten sam ładunek
- ten sam typ sieci
- podobna elektroujemność

roztwór interstycjalny (międzywęzłowy)

- możliwość zmieszczenia się jonu w przestrzeni międzywęzłowej
- zachowanie elektroobojętności kryształu

roztwór substrakcyjny (pustowęzłowy)

Roztwory stałe

- $\rho_{r} = \frac{A \cdot Z}{V_{k}} \cdot 1.6602 \cdot 10^{-24}$
- A ciężar cząsteczkowy,
- Z liczba formuł (cząsteczek) w komórce elementarnej,
- V_k objętość komórki elementarnej obliczenia dla struktury rozpuszczalnika

roztwór substytucyjny (podstawieniowy)

roztwór interstycjalny (międzywęzłowy)

ρ_p – gęstość piknometryczna (rzeczywista)

roztwór substrakcyjny (pustowęzłowy)

 $\rho_r = \rho_p$

 $\rho_r < \rho_p$

 $\rho_r > \rho_p$

Pomiary cienkich warstw – dyfrakcja kąta ślizgowego GID

Powłoki naniesione na różnego typu podłoża (np. stal, kompozyt węglowy C-C, szkło itd.) wymagają odmiennych warunków pomiarowych. W celu zniwelowania wpływu podłoża na obraz dyfrakcyjny stosuje się pomiary pod stałym kątem padania ω.

 o – stały w trakcie pomiaru, niewielki kąt padania, mieszczący się w granicach 1-3 °. **GID** Grazing Incidence Diffraction

Pomiary w konfiguracji GID

Wielkość krystalitów - wzór Scherrera $k \lambda$ $h_{kl} = \frac{\beta \cos\theta}{\beta \cos\theta}$

gdzie:

- β szerokość połówkowa refleksu, $\beta = \beta_{obs} \beta_{stand}$, [rad]
- λ długość fali promieniowania rentgenowskiego, λ = 1.5406 [Å]
- k stała Scherrera, przyjmuje wartości od 0.9 1.0, przyjąć k = 0.9
- D_{hkl} średnia wielkość krystalitu, wymiar prostopadły do płaszczyzny, dla której otrzymano dany refleks

Parametry refleksów a możliwe do obliczenia bądź wyznaczenia wartości

POZYCJA REFLEKSU

INTENSYWNOŚĆ

SZEROKOŚĆ POŁÓWKOWA

Grupa symetrii przestrzennej

Parametry komórki elementarnej

Naprężenia wewnętrzne (jednorodne) Rozmieszczenie jonów w komórce elementarnej

Tekstura

llość materiału w substancjach wielofazowych Naprężenia wewnętrzne (niejednorodne)

Wielkość krystalitów

Zastosowanie metod rentgenowskich

- 1. Rentgenowska analiza fazowa: jakościowa i ilościowa
- Wyznaczanie typu sieci i prawdopodobnych grup przestrzennych wskaźnikowanie dyfraktogramów – reguły wygaszeń systematycznych i specjalnych.
- 3. Obliczenia parametrów komórki elementarnej, jej objętości i gęstości rentgenowskiej.
- 4. Wyznaczanie położenia atomów w komórce elementarnej.
- 5. Obliczanie wielkości krystalitów.
- 6. Określanie tekstury.
- 7. Określanie naprężeń wewnętrznych jednorodnych i niejednorodnych.

Mikroskopy ze skanującą sondą:

Mikroskop tunelowy STM

Mikroskop sił atomowych AFM

Zastosowanie STM

Obrazowanie struktury

 atomowej i profilu powierzchni
 skanowanej próbki przewodzącej
 lub pokrytej warstwą przewodzącą

2. Obróbka materiału na poziomie atomowym

Zastosowanie AFM

 Sporządzanie mikroskopowych map ukształtowania powierzchni – topografia powierzchni– brak ograniczenia rodzaju próbek.

2.Badanie właściwości powierzchni próbek:

- sił tarcia
- adhezji
- przestrzennego rozkładu magnetyzacji
- przestrzennego rozkładu ładunku elektrycznego
- 3. Modyfikacja lokalnych właściwości próbki
- nanolitografia

Budowa mikroskopu AFM model: Multimode 8.0 firmy Bruker

Mikroskop Sił Atomowych AFM wykorzystuje zjawisko odwracalnego odkształcenia sondy w wyniku jej oddziaływania z badaną powierzchnią (zmianami w jej topografii). Odkształcenie to jest wykrywane przez (najczęściej) optyczny układ detekcji.

Mikroskop AFM - zasada działania

skaner - piezoelektryczna tuba z możliwością ruchu w kierunkach XYZ, służąca do regulacji odległości między powierzchnią próbki a końcówką sondy (tzw. tipem), co pozwala na regulowanie siły działającej na sondę, powodującej jej ugięcie oraz, zależnie od modelu mikroskopu, przesuwająca próbkę pod niezmieniającą położenia sondą

Sondy

Sonda - tip, dźwignia, ostrze wymiary:

- długość od 100 do 500 μm,
- szerokość tipa (wierzchołek) średnio 2-3 nm (może być 1 nm lub nawet 20 nm)
- stałe sprężystości 0.01 1 N/m
- częstości rezonansowe w zakresie 2 120 kHz

Różne rodzaje sond

Źródło: Katalog firmy Bruker 2012

Mikroskop AFM - pomiary

Rodzaj dominującej w układzie powierzchnia-sonda (tip) siły oraz własności sondy pozwalają badać różne właściwości próbki:

Sonda "wrażliwa" na pole magnetyczne –badania lokalnych zmian tego pola;

różnica potencjałów pomiędzy próbką a sondą–badania lokalnych zmian pola elektrycznego;

pomiar sił przyciągających lub odpychających sondę, powstających przy zbliżaniu sondy do powierzchni próbki badania topografii powierzchni lub jej właściwości mechanicznych

- oddziaływania van der Waals'a (przyciągające lub odpychające)
- odpychające oddziaływania krótkiego zasięgu spełniające prawo Hook'a (deformacja sondy)
- oddziaływania spowodowane obecnością warstwy wody

Tryby pracy mikroskopu AFM

- Tryby (mody) pracy:
- ✓ Kontaktowy;
- ✓ Bezkontaktowy
- Z przerywanym kontaktem: Tapping
 - Peak Force Tapping (Scan Assist)

Tryb kontaktowy

- ✓ Jeden z pierwszych, wykorzystywanych trybów pracy mikroskopu AFM
- ✓ Utrzymywana jest stała siła nacisku ostrza na powierzchnię próbki
- ✓ Każde zbliżanie lub oddalanie elementów powierzchni zmienia siłę oddziaływania, co powoduje odpowiedni ruch skanera, skorygowany ze zmianami siły nacisku ostrza na powierzchnię próbki
- ✓ Tryb stosowany przede wszystkim do materiałów o dużej twardości

Tryb z przerywanym kontaktem: -Tapping -Peak Force Tapping

- ✓ Dźwignia sondy drga ze stałą zadaną amplitud
- Gdy ostrze sondy natrafia na nierówność, dochodzi do zmiany amplitudy drgań (np. "górka" na powierzchni próbki powoduje wytłumienie drgań czyli zmniejszenie ich amplitudy)
- Vkład sprzężenia zwrotnego steruje ruchem skanera, przybliżającego lub oddalającego próbkę od ostrza w celu przywrócenie zadanej amplitudy drgań dźwigni – rejestrowany ruch skanera odpowiada zmianom topografii powierzchni próbki w kierunku osi Z

✓ Utrzymywana jest stała odległość ostrza od skanowanej powierzchni, co można traktować jako "zerowy" nacisk sondy na powierzchnię próbki

✓ Ruch skanera kompensuje zmiany zadanej odległości ostrza od powierzchni, rejestrując w ten sposób zmiany w jej topografii

 ✓ Główny wpływ na efekt pomiarowy mają oddziaływania van der Waalsa

Warstwa TiO₂ –Al₂O₃ na stali nanoszona metodą zol-żel na stal – obrazowanie 2d i 3d

Powłok TiO₂-SiO₂ na stali inkubowane w SBF (sztucznym osoczu)

Włókna węglowe

Powłoki zawierające SiO₂ nanoszone w wiązce epitaksjalnej na podłoża Si

Powłoki TiO₂-SiO₂ zawierające Ag

0.0

Height

1.0 um

Stal nierdzewna pokryta powłoką SiO2 (10% wag.)

Stal nierdzewna pokryta powłoką SiO2 (14% wag.)

